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Abstract. We study the construction of thé-symmetric creation and annihilation operators,
which form a Wick algebra with some additional relations. This Wick algebra is an algebra of
the operators which act on the associative algebra of polynomials with noncommutative variables
Flx1,..., x,] divided by an ideal generated by quadratic relations between the variables
x1,...,%,. As a result the consistency conditions for such a representation are obtained. The
creators and annihilator have to preserve ideal (x;x; — Zbi{’/’.xkxl), wherebfj € C, which

leads us to consistency conditions.

1. Introduction

We know that all standard particles in physics can be divided into two statistics, bosons and
fermions, but many new statistics of the particle excitations have recently been discovered
in two-dimensional systems of the particles. These new statistics have the following
commutation relations for annihilation and creation operators:

a,-aj+ — qaj*ai =41
here—1 < ¢ < 1 as interpolation between bosons and fermions was studied by Greenberg
[1, 2], Mohopatra [3], and Bzejko and Speicher [4]. Aboveg we do not have additional
relation commutations between creators (then annihilators), but if we ¢akeC such
that k € N, ¢¢&+D = 1 exist, then we have additional relations (see [4]). If the
deformation parametey, is a root of the unity, then such statistics have an amiable physical
interpretation, as studied by Wilczek [21, 22] and Wu [23]. In this case a particle equipped
with chargee is moving on the plane around a singular magnetic field which is perpendicular
to our plane. Every rotation gives a phase factor in the wavefunction of the particle. Some
authors called these statistics anyones. A certain generalization is given by Marcinek (see
[28]) as quon statistic, see example 9. In [28] Marcinek considered a systahpafticles
moving aroundV magnetic singularities.

We would like to present the construction of deformed algebras of commutation
relations. Examples of deformed commutation relation, i.e. interpolations between bosonic
and fermionic statistics, were studied in [4,5,1,6,8]. The problem of additional relations
between pairs of annihilation operators and between creation operators was considered,
for example, in [9,10]. In this paper we construct a Wick algebra with additional
commutation relations, and we prove consistency conditions for the existence of such
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algebras. The construction of annihilation operators is analogous to partial differentation in
the noncommutative differential calculus [11, 14, 15] applied to quantum groups, see [16, 18—
20]. But construction of these operators is not exactly the same as our construction. The
representation of th&§U, (n) algebra with twisted commutation relations can be obtained
from theg-oscillators Fock representation (which satisfies our consistency conditions). This
construction is given by Chaichiagt al (see [13,12]). TheSU,(n) representation was
studied by Chaichiast al (see [17]). Another deformation of the boson statistic is described
by Farlie and Nuyts (see [7]) asgaderivation, see example 7 in section 5.

Generally, in Wick algebra there are no relations between creation (or annihilation)
operators themselves but such relations are possible in certain cases. Obviously all such
relations should be consistent. Hence, we need some additional assumption, see [9]. In
this paper we are going to study an explicit construction of commutation relations and
consistency conditions. Our construction of commutation relations is based on the operators
C, B andB. These operators are not arbitrary, they must satisfy some consistency conditions
such as Wess—Zumino conditions for differential calculus on a quantum plane [15]. As a
result we obtain the consistency conditions from the assumption that the equivalence class
of the creation and annihilation operators of the relation defined by the equatidx = 0,

X € Fy[x1, ..., x,] must be constant.

In section 2 we apply the notion of contraction (called evaluation in [24, 25]) defined in
an algebraic way, see [29], on the polynomials algdfite, . . ., x,] of the noncommutative
variablesx, ..., x, by taking a generalized twist;, on F;[x1, ..., x,]. This contraction
satisfiesC-deformed Leibniz rule. In section 2 we introduce a partial representation of
the creation and annihilation operators defined on the algéfjsa, ..., x,]. In this
representation we have commutation relations between creators and annihilators. In this way
we obtain a Wick algebra in which any sequences consisting of creation and annihilation
operators can be arranged in Wick's way, see [9]. If we want to obtain additional
relations, we have to divide the polynomial algebtiay, . .., x,,] by an N -graded ideal C
F[x1, ..., x,], generated by the twisB € End(F>[x1, ..., x,]) and construct the subspace
J3 C Folx1, ..., x,], generated by the twisk € End(Fz[x1, ..., x,]). Then we construct a
representation of the annihilation and creation on the alggba F[x1, ..., x,]/I, which
is projected from the representation defined on the algéljsa, ..., x,]. If we want to
make the above construction from the twitsC, they have to satisfy certain relations,
from which it appears that the partial representation must preserve the ide#h, this
way we obtain a noncommutative differential calculus on the quantum plane, see [15]. The
crucial point to prove is the additional commutation relation between annihilators is the
m*—invariant property for contraction introduced in section 2. In section 3 we present
deformed commutation relations:

[d;. d1c = 8;,;1 [d}.d}1p =0 [di.dj]; =0

as a consequence of definitions introduced in section 2.

To obtain a representation of, the operators defined on the free algeBfay, . . ., x,]
have to preserve the ideal containedAffixy, ..., x,], which leads us to the consistency
conditions between the tensobs B, C. The conditions which satisfy the assumptions of
theorem 3.3 are enough to construct the representation defined on the algebrahis
case the tensorB, C satisfy generalized braided symmetry constructed in [11, 14], where
there are similar consistency conditions. The contraction hasrthimvariant property
when tensorsB, C satisfy the assumptions of theorem 3.4 and in the particular case see
corollary 3.1.
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In section 5 we present an example which satisfies the assumptions of the theorems in
section 3. Of course, bosons and fermions satisfy these assumption, however, we have
shown ag-deformed example. Let us observe that the colour statistics form a Wick
algebra with an additional relation on the Fock space in which creators are adjoints to
the annihilators.

2. Definitions and notions

Let F[xi,...,x,] be an associative free algebra of polynomials with noncommutative
variables over the field. The monomiaky, ... x;;, is of mth degree ify _, n; = m for
1<i() <nforl e{d,... k}andi(l) #i(d +1). Let F,[x1...x,] = F,, be the set
of linear combinations of monomials atth degree. It is easy to see that the algebra of
polynomials is an\/-graded algebra:

Flxi...x,] =P Fu where Fo[x; ... x,] = Fo = C.

m=0
Now let I be a two-sided minimal ideal generated by the elements:
n
xixp— Y bixax whereb" € Cfori, j k.l € {1,....n}.
k=11=1 '
This ideal has the following form:I = @r@o I,, wherel, .1 = Fi[x1,...,x, 11 +
L,Fi[x1, ..., x,]for2 <mandl, = Im(1—B) C Fo[x1,...,x,], I1 = {0} € Fi[xq, ..., x,]
and Iy = {0} € C.
Let us define the quotient algebra aef variables xi,...,x,. Alx1,...,x,] =

F[x1,...,x,]/1. From the above considerations, it follows thét= P, Fiulx1, ..., X,]

/Im = @m}O 'Am
We will introduce a few important definitions for our paper.

Definition 2.1.A triple W, k, C) is said to be Wick algebra iff\V, k) is an algebra with
unity 1 over fieldk, generated by, ...xn,xl+ ...x; with relations:

xix; — Zcff’;x,fx, =41 k> clk][ # 0 for finitely manyk, 1.
k,l
Definition 2.2.A linear mapC € End(Fy[xy, ..., x,]) is said to be a twist with matrix
elements denoted b;lfj’ € C, wherei, j, k,l € {1,...,n}.

The above definition allows us to define a maf)) € End(F,[x1, ..., x,]), by the
formulae:

Cy (X - Xj ) Xj 4D - - - Xjm) = X)) - - - C (G0 Xji4D) - - - Xjm)
fori e {1,...,m —1} and letC® = id = 1 be identity onF,,[x1, ..., x,].

Definition 2.3.A linear mappingg € Hom(F;[x1, ..., x,], C) is said to be pairing iff we
have the following relation

Folx1, ..., %] 2 xixj — g(x;xj) =68; ; € C fori,je{l,...,n}.

Definition 2.4.The C-twisted contractioit,, with respect to elementary twigtis a mapping
hym € HOM(F,41[x1, ..., x4], Fu_a[x1, ..., x,]) such that:

=Y (L1 ®g ® L, )CE P ...CO.
k=1
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Let us assume that
R =1 1 ® by € ENA(Fy i1, - .o Xn)1 Fonk—2[x1, - s xa]).
Directly from the definition of the contraction we have the following proposition.

Proposition 2.1.The contractiom,, has the following properties:
(1) C-Leibniz rule:

e
() KD = pD 4 gD | cW,

Proof. We will only prove k = 1 by induction onn. Forn = 1 the C-Leibniz rule is

obvious. Then ley € F,_1[x1, ..., x,] andx;, x; € Fi[x1, ..., x,], then we have:
n+1
n+1(x x]y) _ hl)(x xj)’) + Zh(V)C(v b C(l)(xix_,-y)
s=2
n+l n k]
—h( )(x x,y)—i—z Z h(f)C(s_l)...C(z)(xkxly)
s=2 k,l=

= i (xixy) + Z chix Zh“)c“ Vo Py
= i (i) + Z el leeh P (xy)

= h{P (xixyy) + Z e i1 (i y)
=1

= h(ll)(x,-xjy) + h(z)lc(l)(x,xjy)
The proof of the next formula goes similarly. O

Now we will introduceC-partial creation and annihilation operators.

Definition 2.5.Operatorsy;, a;" € End(F[xy, ..., x,]) defined by formulae
def def
ani (V) Z ha(xiy)  ap () = xiy
for y € F,[x1,...,x,] andi € {1, ..., n} are said to be annihilation and creation ones.

Let us define:
Ji=Im@—B) C Flx1, ..., x,] where B € End(Fa[x1, . .., x,]).
The crucial notion in our paper is a mapping definediiny, ..., x,].
Definition 2.6.Let w € End(F[x1, ..., x,]) be a mapping such that
Fulx1, ..., x] 3y — 0 (y) € Fp_1[x1, ..., x,] for m e N andw(C) = 0.
Then we will say thatw is w*-invariant onF,,[xy, ..., x,] if:

@ o (,()(Jz*Fm[X]_, e xn]) C Im—2~
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Definition 2.7.Let d;, d;" € End(F[xy, ..., x,]), then {d;}_;, {d;}'_, is a w*-invariant
representation of annihilation and creation operators iff theartial operatorsia;}’_,,
{a;"}1_,, exist which satisfy the following conditions.

(1) The following diagrams commute

Qi i

Fulx1, ..., x] Fp_alx1, ..., x,] Fulx1, ..., x,] —  Fupalx1, ..., x]
TTm TTn—1 TTm TTm+1
m e -Am—l -Am > -Am-'rl
i dr

m,i

(2) The operatorg; arex*-invariant operators.

3. Commutation relations
In this section we would like to calculate commutators that are introduced in the following
way:

n

def k.l
[t, 51 S ity — Y dinen
k=1

for ; € ENd(F[xy, ..., x,]) andd} € Ci, j. k.l € {1,....n}.

We then have the following theorem.

Theorem 3.1Let {d;}]_,, {dj’}?:1 be a m*-invariant representation of creation and
annihilation operators which are acting on the quotient algghthen we have the following
commutation relations:

[di, d;_]c = (Si,jl [di, dj]é =0 [d;r, d;—]B =0.

Proof. Now we will prove the first relation. Ley € F,[x1,...,x,], n € N. Then by
applying theC-Leibniz rule we obtain:

An1,i © Ay (V) = Gni1,i (X))
1
=y (xix;y)
=" (ixjy) + hP o CP (xix;y)

=8y + Y il (xy)))
k1

=[&; + Z Cllf,’]l'(a;_lqk o ap](y)
ki

and fory; € A, we have by the commutative diagrams the following equalities
dn+l,i © d;:jyl = dn+l,i © d,jjjﬂny
= TpQn+1,i © a,j:jy

ki o+
= § :Ci,jn”an—l,k oany + 8 jmny
Kl

k, 3+
= E C,‘.jdn,]_,k o dn,lyl + 8i,jyl-
k,l



3240 R Raowski

For the second one ley € A, and y; = m,(y) for y € F,[x1,...,x,]. By using
definition 2.7 andr*-invariance it follows:

dn—ZL,i O dy,;j (yv) =m0 ap—1,i © an,j(Y)
1
= T2l 12 (xix; )
= my_2h WP (xix; — B(xix))y + 7ah” 1hP B (xix;)y

k.l 1
=22 + Z bi’jnn—th,,)lh,SZ) (xkxly)
k.l

= Z Ef”;dnfl,k o dn,l ()’1)
k,l

wherez € I,_,. The last one follows from the commutation relation of the quotient algebra,
which completes the proof. O

The operatorsi;, dj+ form a Wick algebra. But there is a problem with the existence
of such operators which have additional commutation relations. From the definition of
representationt;, dj““, for i, j € {1,...,n} (see definition 2.7) it follows that there exists
a C-partial representation which satisfies the commutative diagrams (from the previous
section). Thus, it follows tha€-partial representation have to preserve a two-sided ideal,
1, generated by quadratic relatioms; — >} ,_; by} x.x, = O.

From this we have neccessary conditions.

Proposition 3.2.A necessary condition for the constant action on the equivalence classes
of the operatow; is ¢

1-B)1+C)=0
whereC has the matrix elements given B} = ¢}

Proof. By taking variablesy;, x; of the spaceFi[xs, ..., x,] and by using theC-Leibniz
rule (see lemma 2.1) we have:

0 = ho(x; (1 — B)(x;xp))
= (8jubem — by ha(xixixm)
I,m

=Y Gjabkm — BB + AP CD) (xixix)

N

=Y " um — by Gisxm + Y el b (xrx,30))
I,m r,s

=Y " 8s8km — bjsrm) Y Gisbmrxr +ci7'x)

I,m r
=3 bk — b Gia8mr + X
roIm
Then we have;
> 8 — by G + ") = 0.

I,m

O

The next theorem gives sufficient conditions for the existence 6fFr@presentation
which is acting on the quotient algebrawith relations: f;, d]c = &;;1and [, d 15 =
0.
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Theorem 3.3 (Borowiec—Kharchenkdf the tensorsB, C € End(F;[x1, ..., x,]) satisfy the
following conditions:

(1) (1= B)(1+ C) = 0 whereé| = ¢}

(2) there existsA € End(Fs[xy, ..., x,]) such that: C?CVYB?@ — BOCcAc® =
(1— BYYA

thena,(I) C I wherel C TE is the minimal ideal generated by the quadratic relation
x —Bx =0forx € Fo[xy1, ..., x,].

Proof of this theorem was given in [11, 26].
If we want to have commutation relations between annihilators, then the next theorem
shows when it is possible.

Theorem 3.41f matricesB, C € End(Fy[x1, ..., x,]) satisfy the following conditions:
(1) they fulfil YBE: BRCcWCc® = cOCc@B®
@) WPRPcED | c@ 4 p$P kD cOpP[1-BD] = 0fork € {3...n} and
neN
thenh "  h @ (J3 Fulxt, ..., %)) C L2 C Fu_alx1, ..., x,].

Proof. We will prove this by induction. Let us suppose that for certain- 1 € N the
assertion is satisfied. Then

i B2 (1= BY) = (" + P ,cP) 0P + 1D ,CP) (1 - BY)

m—2
= nPr@ + 12 ,cOrP)y 21— BY) + 1?2 ,cPp® c@ 1 - BY)
— (hgl)hﬂ) + h(z) Zc(l)/’lgz))(l _ é(l)) + h(z) 2h(3) 1c(l)C(2)(1 _ E(l))

= nPR2 + 12 ,cORP) 21— BY) +1h? 0P (1 - B?)cP @,
The last term belongs té,_,. Hence
hY h@ @ — BY) = hPh? + 12 ,cPnP)A - BP) + 2
= hP'h? + 12 ,cYnP)1 - BY)
+ PR = hPhPy L - BD) + 2
= OB 4 12 P — KPR 1 B
=n{" (P +hPC? + . 4R C™ L c®)
+ (h(ll) + h(12)C(1) 4ot h(lmfl)c(mfz) o C(l))h(f))(l _ E(l))
wherez € I,,_». We get the assertion from condition 2.
To finish the proof we only need to carry out the calculation#os 2
= hPh? +1nPrPc?)a - BY) = 0.
(]

Let us consider a simpler situation, i.e. one in which the matrix has the following form

c’."j’. = ¢; ;6;;8;x and so on. Then we have a simple corollary on the existence of such a

L

répresentation.

Corollary 3.1. Let il = i8S and by = b; ;8,8 and bii = b; ;8;,8j, then the
tensorsB, B, C define ax*-representation of creation and annihilation operators if the
following conditions are satisfied:
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1 A-B@A+C)=0 WhereEZ’,f'j" = c}j‘
(2)cij—b;j; =0and 1—¢; ;b;; =0 fori, j e {1,...,n}.

Proof. Because the tensors satisfy the Yang—Baxter equation, we have to prove that the
second condition of theorem 3.4 is satisfied

PPkt c? 4 R0 et (A - BYxxix, - x,

= h(ll)h(lk)xille . xjk_zxizxjk_l . Xj”C[Z’jl e Cl'z,jk—z
81 X X XXX, C i
—E,’L,’Z[I’l;l)hg_k)xith . xjk_zxilxjk_l . xjncil,jl . Cilajk—Z
81X X XXX, C gy i)

= [5i1,j1852,jk—1ci2,j1 < Cipjp, Tt 852,j18l'17/k—1cl'1~,j2 <o Cig s
_Eilqiz[5i2,j18i1-jk—1cl'17j1 <o Ciy e p
8ir.18iz s Cizz - - Cinjial| X - - Ky -+ X,

= [81‘1,./'181‘2,.1}71 (Ciz,jl - I;il.iz)cizjé ~oCig i a
+8i2,j15i1,jk71 (1- Cil»jlgilaiz)cilsjz s Cil.j/ﬁz]sz s )Ejk—l oo Xy

= O.Xj2 e X g e X

By taking above formula in the proof of corollary 3.1:
(hWPrPC . c? 4 nk2ck3 . (A — BYxixix, ... x),
= [(3,‘1,1'18,‘2,”4 (Ci2~j1 - Bil,iz)ciz,jz <+ Cigjia
+8i2,j18i1,jk,1 (1 — Ci1,j1bi1,iz)ci1,j2 e c,-l,jkfz]sz e fj,ﬁl e XJ'”
and assuming that = j; = i, we have a nonzero term only if = j;_;, then we have
(C,'l,,'l — E,‘l,,'l + 1-— Cil,ill;il,il)ciz,jz e Cl’ijk—zsz e £j’k—1 e )Cjn
= (1 + C,'l’,'l)(l — bil.il)ciz,jz e Ciquk—Z'ij e )?jk—l e )Cj".
Then by putting(1+¢; )(1—b; ;) = 0 and fori # j ¢; j —b;; = 0 and 1~ ¢; ;jb; ; = 0 we
have the following corollary.
Corollary 3.2. Let ¢}l = ¢;;8:,8; and b’} = b; ;6,:8;x and b\ = b; ;8,48 then the
tensorsB, B, C define an*-representation of creation and annihilation operators if the
following conditions are satisfied: A
(1) 1= B)(1+ C) = 0 whered;"} = cif

@ A+c)A—bi)=0
(3) Ci,j — bj,i =0and 1- C,‘_jb,‘,j =0fori #*j.

4. Fock representation

In this paper we want to introduce the scalar product, in which the creators are adjoint
to annihilators. The last property is not satisfied for the usual scalar product on the
F[x1,...,x,]. SO we have to introduce a modified inner product.

On the quotient algebral the scalar product has to be degenerated, because the kernel
of this product contains ideal, every vectorx which belongs to the ideal in quotient
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algebra is to bé then (x, x) = 0. Itis well known that adjoint is an involution that gives
a new relation betweeR, B and tensolC is a Hermitian. For example, let us take:

§ : k g+
n+ll nj bljdn+1k nl_o

then acting by adjoint operatlon onto this relation we have:
dy jdni1: — Z b, tdnidpi1x =0

from the other side we have:
dn,jdn-HL,i - Z I;j‘:fdn,ldn-i-l,k =0

so we obtairi?f‘; = Ejf
In an analogous way we get:

k.l =1,k
Ci,j le
Now let us introduce the Hermitian bilinear form on tli¢x,, ..., x,]. In this definition

we will introduce inner product on the direct products and by linearity we will extend onto
the whole spacé|[xy, ..., x,].
(-, : Flx1, ..., x5] X F[x1,...,x,] — C
such that:
0 forr #s
Oty s iy oo X ) e = (Xi « v X,y Gy Xy« - Xj ) for r =s.

According to [9] we can write:

(x, y)c = {x, Py)o
where
=1®P, )R, R, =1+C1+C1Co+---+C;1...Cy, Po=1.
The following theorem given by Baejko and Speicher [5] shows excellent criteria for
positive defined Hermitian bilinear forms defined as below.

Theorem 4.1 (Brejko—Speicher)if tensorC € Hom(E ® E, E ® E) fulfils the following
conditions:

(1) cOCcD =D for |i — j|)1,

@) cOcHCH =cHcHBceW for |i — jl=1,

(3) IIC (1

@) ot =&,

then( ¢ is strictly positive defined.

If |C|| = 1 the above conditions are satisfied, tHen)¢ is positive defined.

Directly from definition we see that creators are symmetric to annihilators
(azxxil C X Xy X ) = XXy X, Xy - X )
= (Xiy .- X, An xXjy ... Xj )C-
Let
ker(-, y¢ = {x € F[x1, ..., x,]l{x, x)c = 0}
then we have the following.
Proposition 4.2.J c ker(-, )¢ C F[x1, ..., x,].
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Proof. We prove this theorem by induction. Far= 2 we have

(L= B)xiyxip, Xj,xj,)c = (xj,%),, (1 — B)xi, Xp,) ¢
= (Xj,, az,x;, (1 = B)xi xi,) ¢
= (x}. 0)c
= (xj,,0) =0
so we have

(x,x)c=0 forx € I,.

Let us take(x;, ...x;,,xj,...x;,)c = 0 for x;, ... x;, € I,, for certainn € N'. We show
that this relation is valid fom + 1. Letx;, ...x;, , € L,41 then:

Xy« e Xy Xjy oo X )0 = (Xjy e Xpgs Xig - Xy )

= (Xj, ... Xj, 1> Amy1,x;, Xiy - - X, )C-
We know that:
Xiy oo Xipyy € Ipp1 = apy1 0 Xiy - - Xipy € Iy
then by induction and linearity, for everye F,,11[x1, ..., x,] we have:
(Xip . Xip, Ve =0
and once again by applying linearity we have assertion, which completes the proafl
Lemma 4.1Let x € ker(-, -)c thena;(x) € ker(-, -)c anda;" (x) € ker(-, -)c.

Proof. From assumption we know that spageis finitely dimensional. Letx, x)c = 0,
so from the Schwarz inequality we have:

(a;(x), a;(x))c = (a; a;(x), x)c < (a; a;(x), a;" a; (x))c(x, x)c = 0.
The proof of the second part is analogous. |

Let us observe thata[, a;]zx € I C ker(-, )¢ and bi,a;r]gx e I C ker(-, )¢,
([ai, a; 15 — 8 jDx = 0 € ker(-, -)c.

From lemma 4.1, the above observation follows that on the algélxa, ..., x,]/
ker(-, -)c we can definel;, dj+ € End(F[xy, ..., x,]/ ker(-, -)¢), which satisfy:

(1) the following diagrams:

+

Qi Ay i
Fulx1,....x,] —> Fu_1[x1,...,x,] Fulx1, ..., x] —  Fupa[x1, ..., x]
Tm -1 T Tm+1
-Am 'd—> Amfl -Am '—+) Am+l
m,i d

m,i

(2) and commutation relations:
[di,d]c = 8i ;1 [di,d;]; =0 [4".d]s =0.

Theorem 4.3If ||C|| < 1, whereC € End(F;[x1, ..., x,]), then for everyf € E the
operators®(f) := (d(f) +d*(f))/~/2 are essentially self-adjoint on the twisted Fock
space.
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Proof. To prove this, it is sufficient to find a dense set of analytic vectorsifof) and
every f € E = Fy[x1, ..., x,]. Let us observe that for every € A; we have:
ld* (H)xlE = (fx, fx)e

= (fx, Py1fx)o

= (fx,(1® P)Rri1fx)o

< I Resall{fx, fPix)o

< k4 DILIPIxZ.
Then we can write

Id*(f)...d* (F)xl < Vk+n.. Nk+ 1| flllxllc
where #¢ {+, } and

o0

S Lwr (e
n:

00 tn
<Y 2P P Ix e
= n:

n=0
wherex € A;. Thus, the convergence radius is

r=(Velfl) >0

which completes the proof. O

5. Examples
In this section we would like to show a few examples, which fulfil the consistency conditions
formulated in section 3. We start with two simple examples.
Example 1 (bosons).
b = 51 = ekl = g
Example 2 (fermions).
bt = b =il = =818
In the general case a linear condition is satisfied wheidrgs — B) C Ker(idege +C).
For example this relation is not satisfied when:

B(xix;) = qi_<"xjx,' B(x;xj) = qi_jxjx[ C(xixj) = qi_jxjx[.

This relation satisfies the second condition of theorem 3.3. ¢~a¢ {—1, 1} all the
assumptions of theorems 3.3 and 3.4 are satisfied. Then we have the following.

Example 3 (mixed bosons—fermions).

bt = b =it = (=188
and, more generally we get the following
Example 4 (g-deformed algebra).

bt = b = g7 8185 =g 8118 forg e R
as a particular case of more general relations, which were studied in [10].
Example 5 (bosonic colour statisticd)et |¢;| = 1 fori € {1...dimE}.

by = l;fc,l =q;qi%i15j C,k,] = 4iq;%i10j k-
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Example 6 (fermionic colour statistics)et |¢;| = 1 fori € {1...dimE}.

Kl rkl - K -
bj; =b;; = —q;qiSi 8k ¢ = —4iqj%i1 k-

The following example was given by Farlie and Nuyts [7].

Example 7.Let

Ar={geC:(@g—qgHig—qgH=r’cRy)

then

qi — qi_l

gi—q7t

We can give a slightly more general example.

I;iﬁj =b= =Cji for qi.4qj € A,.

Example 8.Let Q € Mat,(C) such thaly; ;¢; ; = 1 andg; ; = g;,; then

bij=0bij=gqij Ci,j =dji-
The following example was given by Marcinek [27].

Example 9 (quons).et Q € Mat,(C) such thalg; j¢; ; = 1 andg; ; = g;,; then

S

ij =bij =qijcij=qji fori#j
B,"i = b,",' = 1, Cii = (i Whereq,- eC.

Example 10 §U, (n) algebra). Let
bij=b;=1 cij=q> i,j€f{l,...n}

then by applying corollary 3.2 we have the operatrsh,” with the following relations:
bibf —q®bibi =81 bibj —bibi = 0=bbf —bb;.

Thus, following Chaichiaret al (see [12, 13]), we define the operators:
A = g2 Vb Al = bigZe N

where N; is defined by|K;| = ¢V and K; = b;b} — b b;, hereb;, b form the Fock
representation an&; > 0, this representation is bounded for<0 ¢ < 1. We obtain
SU, (n)-covariant algebra studied by Woronowicz and Pusz [16] and Chaieliah[17]:

AiA; = qAjA; ATAS =qAf AT i<j
AjA] =qAA; i #j
AAT —gPATA =1—-(1—-¢? ZA,jAk.

k>i
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